The Černý Conjecture and 1-Contracting Automata

نویسنده

  • Henk Don
چکیده

A deterministic finite automaton is synchronizing if there exists a word that sends all states of the automaton to the same state. Černý conjectured in 1964 that a synchronizing automaton with n states has a synchronizing word of length at most (n− 1)2. We introduce the notion of aperiodically 1-contracting automata and prove that in these automata all subsets of the state set are reachable, so that in particular they are synchronizing. Furthermore, we give a sufficient condition under which the Černý conjecture holds for aperiodically 1-contracting automata. As a special case, we prove some results for circular automata.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cerny conjecture and (n-1)-Hamiltonian automata

A deterministic finite automaton is synchronizing if there exists a word that sends all states of the automaton to the same state. Černý conjectured in 1964 that a synchronizing automaton with n states has a synchronizing word of length at most (n− 1). We introduce the notion of aperiodically 1−contracting automata and prove that in these automata all subsets of the state set are reachable, so ...

متن کامل

The Černý conjecture for one-cluster automata with prime length cycle

We prove the Černý conjecture for one-cluster automata with prime length cycle. Consequences are given for the hybrid Roadcoloring-Černý conjecture for digraphs with a proper cycle of prime length.

متن کامل

The Černý Conjecture for Aperiodic Automata

A word w is called a synchronizing (recurrent, reset, directable) word of a deterministic finite automaton (DFA) if w brings all states of the automaton to some specific state; a DFA that has a synchronizing word is said to be synchronizable. Černý conjectured in 1964 that every n-state synchronizable DFA possesses a synchronizing word of length at most (n−1). We consider automata with aperiodi...

متن کامل

The Cerny Conjecture for Automata with Blocking States

In [7], Jan Černý conjectured that an arbitrary directable automaton with n states has a directing word of length not longer than (n−1). This conjecture is one of the most longstanding open problems in the theory of finite automata. Most of papers dealing with this conjecture reduce the problem to special classes of automata. In present paper we deal with this conjecture in the class of automat...

متن کامل

The Černy Conjecture for Aperiodic Automata

A word w is called a synchronizing (recurrent, reset, directable) word of a deterministic finite automaton (DFA) if w brings all states of the automaton to some specific state; a DFA that has a synchronizing word is said to be synchronizable. Černý conjectured in 1964 that every n-state synchronizable DFA possesses a synchronizing word of length at most (n−1). We consider automata with aperiodi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016